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Abstract—We describe a novel runtime system that inte-
grates lightweight threads with a partitioned global address
space (PGAS) mode of computation and apply it to the
Barnes-Hut (BH) algorithm. OQur model combines the power
of low-latency, zero-copy, one-sided communication via PGAS
with the power of fast context-switching and user-managed
preemptive lightweight threads into a hybrid interface. We
describe the challenges in designing such a runtime system,
analyze approaches and trade-offs, and present benchmark
results. Qur BH application exemplifies the usage of the model
and shows how we can obtain a simple, yet efficient and
scalable, algorithm. Our implementation improves on a state-
of-the-art implementation by up to 13 times. The hybrid
model also improves the performance of various multi-threaded
micro-benchmarks on a distributed memory cluster.
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I. INTRODUCTION

Trends indicate that future supercomputers will run hun-
dreds of physical threads per node. [1], [2] predict O(10)
nodes and O(103) cores per node for the road to exascale
computing. They also argue that software stacks must evolve
in order to break current obstacles of scalability. Both inter-
and intra-node parallelism must be exploited effectively for
this to happen. Moreover, problems such as load balancing,
latency hiding, and managing communication worsen at
this scale. In order to implement efficient applications, new
techniques are necessary. One popular development is to
integrate asynchronous task parallelism through lightweight
threads with separate communication libraries. Several li-
braries have implemented this type of programming model,
one being HCMPI [3].

Lightweight thread libraries will be able to take advantage
of the high thread count in future machines. However, the
interaction between the thread package and the communica-
tion library could be problematic: current implementations
of MPI have performance problems when a large number of
threads communicate simultaneously, even with intelligent
Network Interface Controllers (NICs). These issues can be
attributed to course-grain locking and polling overhead, as
demonstrated through a simple communication test where
threads from different MPI processes communicate in pairs
simultaneously (i.e. a ping-pong test). See Figure 1 for the

Marc Snir
Department of Computer Science
University of Illinois at Urbana-Champaign, IL, USA
Mathematics and Computer Science Division
Argonne National Laboratory, IL, USA
snir@mcs.anl.gov

results for various MPI implementations, testing from 1 to
8 communicating threads for messages with 1 byte to 2 MB
of data.

PGAS programming models can offer several advantages
over MPI. For instance, the use of global arrays results in
programs which are easier to understand. Moreover, PGAS
can leverage RDMA technology. However, PGAS languages
have not surpassed MPI in popularity due to the engineering
efforts required to develop the language and transform ex-
isting applications into PGAS-based implementations. There
is significant skepticism in the user community about the vi-
ability of new languages focused on HPC, hence reluctance
to commit to such languages. Libraries are easier to develop
and maintain than programming languages and can better in-
teroperate with current code. Further, libraries implemented
in high-level languages can leverage the language features
so as to appear as language extensions.

We have designed and developed a new C++ runtime
library which evolved from our previous work on the Barnes-
Hut algorithm using a PGAS model [4], [5]. Our runtime
system library provides an intuitive layer of abstraction over
PGAS and asynchronous parallelism. The abstraction allows
a simple, yet efficient implementation of the Barnes-Hut
algorithm on distributed memory, multi-node clusters. Our
experiments also show significant improvements for multi-
threaded micro benchmarks over GASNet and MPIL.

The rest of the paper is organized as follows. Sections
II and I describe our PGAS programming model and
its current implementation. Section IV describes the n-
body simulation problem and the Barnes-Hut algorithm. A
state-of-the-art multi-threaded algorithm and implementation
in comparison to our method are described in Section V.
Section VI discusses experiments and evaluates our imple-
mentation of the Barnes-Hut algorithm. Section VII provides
some related work. Finally, Section VIII concludes the paper
and discusses future work.

II. PGAS AND LIGHTWEIGHT THREAD RUNTIME

We describe in this section the design of PPL, a C++
PGAS parallel libary. PPL is designed for abstracting a
model of computation that combines a communication layer
which uses one-sided communication, a threading model
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which supports task-parallelism, and a memory model which
provides an interface for easily manipulating global data
structures.

A. Threading Model

We do not distinguish in our design the notion of
lightweight and non-lightweight threads. The implementa-
tion can freely choose a threading library to realize the
idea. However, the full benefit of our design is achieved
with lightweight threads that are scheduled by the runtime
(i.e. a task model).

Our threading interface provides the following methods:

« spawn: spawn a thread to execute a function.

o future: spawn a thread, but delay execution until a
requirement is met.

e yield: preempt the executing thread.

« sync: synchronization handler that may (temporarily)
disable or enable execution of a thread.

B. Communication Layer

The communication layer provides an interface for per-
forming one-sided communication.
The two basic methods are:

« memget: perform a read operation from a local or

remote memory address into local memory.

« memput: perform a write operation from local memory

into a local or remote memory address.

When memget or memput return, they indicate local
completion. A handler (sync) is associated with each
execution of memget and memput which can be used to
poll for remote completion, either by testing or waiting. If
an executing thread is required to wait, it will be preempted
at least until the communication is finished, providing an
opportunity for other runnable threads to be executed; an
implementation of the communication layer must provide a
mechanism for preempting any communicating thread.

C. Memory Model

PPL describes two distinct heaps: a global heap and a
local heap. The local heap contains locations which can be
accessed only by locally executing threads, while locations
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Ping-pong results for various MPI implementations on different machines.

on the global heap can be accessed by any thread. The access
to an address on a remote portion of the global heap is done
using global references.

There are three types of global references described in
PPL: global variables (gvar), global vectors (gvec), and
global pointers (gptr). A gvar is allocated on a single
node and provides read-only access to remote nodes.

A gvec is similar to a Fortran Co-Array [6]: a distributed
matrix such that each process i has local access to a single
column i in the gvec. The allocation of a global vector
is a collective operation. Any implementation must ensure
that the local chunks have the same base address on each
node, enabling a thread to correctly compute the address of
a global vector location from a remote node.

A gptr can be used to refer to any location in a local
heap or remote portion of the global heap.

Locations in the global heap can be accessed using one-
sided operations, such as put or get. These operations may
either result in an access to the global heap on the executing
node, or to the global heap on a remote node. In the later
case, the invocation results in a communication request
which will preempt the executing thread.

PGAS languages, such as UPC [7], provide a model of
global shared memory, with two restrictions: (1) nodes are
single-threaded; and (2) caching is not supported. Work is
in progress to add threading to UPC; however, we are not
aware of any promising efforts to add caching. PPL escapes
both restrictions.

Caching is essential for good shared memory perfor-
mance. It becomes increasingly important when nodes run a
large number of threads, because of the increasing opportu-
nities for collaborative caching: a remote location accessed
by one thread may also be accessed by other threads on
the same node. Many UPC codes perform caching explicitly
by copying data from remote nodes to the local heap. PPL
provides implicit caching, where remote memory is cached
in local memory; however, it does not provide implicit
coherence. Implicit coherence does not scale well and most
parallel scientific algorithms proceed by well-defined phases;
coherence operations can be associated with the beginning
or end of a phase.



PPL provides an abstract cache class for which any
caching policy may be implemented in software. The
caching class provides the following operations: adding an
object to the cache, accessing or updating a cache entry, and
removing an object from the cache.

In order to provide an opportunity for optimization with
regards to accessing remote data, PPL specifies three types
of get operations for global pointers: 1get, rget, and get.
First, 1get is simply a local get; it is assumed there is a
cached copy of the gptr. The corresponding cache entry
is returned, otherwise an exception is thrown. Next, rget
ignores any cached copies of the gpt r and always requests
a new copy from the corresponding remote node. This will
update the old cached copy and return the new reference
once the request is complete. Finally, get is a fail-safe
generic get operation. If there exists a cached copy of the
gptr, then the reference is returned. Otherwise, a request
for a new copy is sent to the corresponding remote node,
updating and returning the new cached copy once the request
is complete. Currently there are no changes to the cache
when a put operation is performed, for simplicity.

1II. PPL IMPLEMENTATION

In this section, we describe implementations of the dif-
ferent PPL modules.

A. Threading Model

In most cases, supporting a large number of threads can be
expensive, especially when context-switching is performed
regularly. Although the PPL threading model supports any
threading library, it is expected that using a lightweight task-
based threading model will be more efficient than a standard
system-level threading model (i.e. POSIX threads). By using
a lightweight task-based threading model, spawning and
context-switching latencies are reduced. Further, applica-
tions and libraries are unable to explicitly wake system-
level threads, since the scheduler is completely dependent
on the operating system. Lightweight task-based models
typically implement their own scheduler, which includes a
load-balancer and mechanisms for preempting and enabling
tasks. For these reasons, our first threading model imple-
mentation uses a lightweight task-based model, specifically
the Qthreads library [8].

Qthreads provides a synchronization primitive which al-
lows tasks to wait on the status of a single bit in memory
(i.e. a full/empty bit). This method was originally seen in
the Denelcor HEP system for guaranteeing correct ordering
of memory operations [9] and is still seen in the Cray XMT
architecture as a form of low-overhead synchronization
for simple parallel programming models [10]. In order to
efficiently couple communication completion with thread
scheduling, PPL implements sync using the full/empty-bit
primitive provided by Qthreads. This ensures that a task

waiting for communication completion is preempted and
efficiently rescheduled when it can continue execution.

Qthreads provides the ability to adjust the number of
workers (threads) and the number of task queues (shep-
herds), as well as provides automatic load-balancing via task
stealing between shepherds. In PPL, we fix the number of
shepherds and assign one worker per shepherd.

B. Communication Layer

In order to efficiently support a large lightweight thread
count with blocking communication calls, it is necessary
to offload polling to a separate thread (or threads). In
our implementation of the PPL communication layer, we
do this by splitting the execution of communication calls
between the calling thread and a communication engine
(CE). The communication engine is defined as a dedicated
service thread that executes parts of the communication code
which must be executed atomically. This avoids the need for
locking and mutual exclusion, which is an important rea-
son why thrashing exists when many threads communicate
simultaneously. Further, this design facilitates leveraging
more intelligent NICs, since functions can shift between
the NIC and CE without affecting other components. We
implement the communication layer assuming that a NIC is
serviced by a single CE. As modern NICs provide multiple
independent virtual interfaces, this assumption is not too
restrictive. Larger systems may require multiple CEs, but
a suitable partition of traffic can ensure that there is little or
no synchronization between multiple CEs.

Communicating threads submit requests to the CE through
a request container (RC). When a thread performs a block-
ing communication call (i.e. memput or memget), the
request is submitted to the RC and the thread waits on the
associated handler for completion. When a communication
request is complete, the CE notifies the scheduler by chang-
ing the state of the handler to re-enable the task.

Since communication is completely offloaded to the CE,
the scheduler is able to better manage tasks which are
waiting for communication requests. Progress on a request
continues even if a task is preempted. Therefore, in the
general case, it is most efficient to yield a task once it
submits a request to the RC, provided that there are other
tasks waiting to be scheduled. Likewise, it is ideal to
attempt to reschedule a task once notified by the CE that
a communication request is complete.

The communication library we use initially for PPL is
GASNet [11], in order to simplify development and provide
portability.

Through basic testing, we have seen that, compared to the
latency of communication with a small amount of data, the
overhead of using the full/empty-bit primitive to preempt
and re-enable tasks is relative large. In an attempt to hide
some of this latency, we use two Pthreads to implement
the CE: one thread is dedicated to executing the GASNet
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Figure 2. A comparison of put and get latency using one and two threads
for the CE.

RDMA calls associated with the communication requests
(Comm Thread); the second thread is dedicated to managing
synchronization for communication requests (Sync Thread).
When a request is submitted to the RC, it is labeled with the
corresponding RDMA operation. Once the Comm Thread
of the CE performs the operation, it relabels the request
as waiting and places it back in the RC. Periodically, the
Comm Thread will test for any completed requests. Once
a communcation request is complete, the request is placed
in a secondary queue for the Sync Thread to wake the re-
questing task. This design overlaps the latency of submitting
communication to the network (via GASNet calls) with the
latency of waking preempted Qthreads tasks.

In order to provide an efficient implementation of the RC,
it is necessary to have a thread-safe data-structure which is
optimized to allow for multiple producers of data and only
a single consumer of data. Thus, we implement the RC as a
lock-free MPSC queue [12]. Further, a traditional queue is
used to implement the secondary queue since only the two
threads of the CE use the queue.

In order to demonstrate the benefits of using two threads
for the CE, we ran a simple latency test for put and get
operations (see Section VI-C for a more detailed explanation
of the test). Figure 2 shows the speedup of using two threads
versus one thread in the approach described above. For data
sizes up to 8 KB, it improves performance by up to 48% for
get and 53% for put. For larger data sizes, the performance
is the same due to the synchronization latency being much
smaller than the overall communication latency.

The importance of using two threads for implementing
the CE does not necessarily come from the improved per-
formance for small messages. For many applications, there
may be no benefits. We instead focus our analysis on the
benefits with respect to future hardware. Considering an
implementation of PPL which places the CE on an intelligent
NIC, the latency of notifying the scheduler of a completed
communication request should be negligible. By using two
threads to implement the CE, we can better understand
the behavior of future implementations of PPL which use
intelligent NICs. Further, in BH, since there are a large
number of relatively small get operations performed, we
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Figure 3. PPL Implementation using Qthreads for the threading model and
two threads for the communication engine. Sync Container is the Qthreads
scheduler.

observe a performance improvement using this approach.

Figure 3 illustrates the interaction between the commu-
nication layer and threading model in the current PPL
implementation.

C. Memory Model

At the initialization of PPL, a segment of memory is
preallocated for one-sided communication. Since the initial
implementation of the communication layer uses GASNet,
we make use of gasnet_attach to perform memory
attachment to the network device. The preallocated memory
is split into two equal segments for the local and global
heaps. umalloc [13], a memory manager that dynamically
allocates space for objects on custom memory addresses, is
used for allocating global references to the custom heaps.

A gptr is the basic global reference used for interacting
with the memory model. It is a class which contains a
single structure holding the remote memory address and the
associated node id. Coupled with gptr is a software cache
engine. The cache is implemented using a concurrent hash
table. The key of the hash table is a pair containing a node
id and remote address which uniquely identifies a particular
gptr. Depending on the associated accessor, a query to the
cache will check the hash table to determine if a cache entry
is already present and perform the appropriate operations.
gvar and gvec are also classes, both implemented using
gptr as internal data.

IV. BARNES-HUT ALGORITHMS

n-body simulations are classical problems of simulating
the evolution of a system of n bodies interacting with each
other through gravitational and other forces. A direct ap-
proach to this problem computes the force of one body with
respect to all other bodies, yielding ©(n?) time complexity.
This is impractical for a simulation involving a very large
number of bodies.

The Barnes-Hut (BH) algorithm is an approximation
algorithm to the problem. BH approximates the interaction
of a body with a collection of other bodies (cell) deemed



far enough by considering the collection as a single body,
using the center of mass of the collection as its location [14].
The BH algorithm partitions and organizes the 3D space of
bodies into a octree. The root of the tree represents a cell
that contains all bodies. Each cell is recursively divided into
eight child cells that contain the bodies in one octant of the
parent cell. The recursion stops when the number of bodies
in a cell is below a fixed threshold. Once the tree is built, the
center of mass of a group of bodies in a cell can be computed
bottom-up. When computing the force of a body, the tree is
traversed and the center of mass is used once the cell is
deemed far enough. By using this hierarchical partitioning
strategy and approximation, BH reduces the complexity of
the simulation to O(nlogn).

Each body can interact with a different number of cells.
In order to load balance the computation, the BH algorithm
keeps track of the number of forces computed per body at
the previous iteration; it uses this count as an estimate of
the number of forces to be computed at the current iteration.
Bodies are distributed to processors, so that each node has
an equal number of forces to compute. The distribution is
performed by arranging the bodies on a space filling curve
and splitting the curve into equal-weight segments. As a
result of this strategy, bodies allocated to a processor are
nearby in space, and are likely to need the same cells.

The BH algorithm was implemented in UPC by [4].
In a recent paper, they reimplemented it in C++ using
the UPC runtime as the communication layer with several
optimizations [5]. The combination of C++ and UPC runtime
shows significant speedup over the pure UPC implementa-
tion and results in an algorithm that is as good or better
than competitors. Thus in this paper we will refer to it as
the UPCR-BH and use it to compare to our method.

V. DISTRIBUTED MULTI-THREADING BARNES HUT
ALGORITHM

A. UPCR-BH implementation

In UPCR-BH, the octree is built at the beginning of the
simulation and then updated after each time-step. The tree
is distributed and is stored as a structure linked with global
pointers. Each processor holds a copy of a few top levels of
the tree.

Each thread is assigned a list of bodies using the scheme
described in the previous section. To compute the interac-
tions on a body, a thread traverses the octree starting from
the root. We say that a cell is opened by a thread if the
thread accesses the children of the cell. If a remote cell
must be opened, and its children are not local, the worker
thread will perform communication in order to localize the
children. We want to avoid localizing the same cell multiple
times by using some caching scheme. [4] describes three
different schemes. The common idea of the three schemes
is to maintain a number of concurrent hash tables used
to indicate if a cell has been previously localized. The
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Figure 4. View of a single BH process for a quad-tree (on the right)
of a 2D space partition (on the left). Bodies are stored at leaf nodes and
are distributed into 2 processes. The dotted lines and circles represent the
remote subtrees and subcells.

difference between the three algorithms is the different
communication policy used for each, i.e. which worker
performs the communication and how the hash tables are
distributed.

Among the three algorithms, the biased and distributed
algorithm performs the best. It dedicates a thread for com-
munication and maintains a hash table for each of the work-
ers and at the communication thread. Since a worker does
not know about other worker hash tables, multiple threads
can still submit the same cell to the communication worker.
However, due to the private hash inside the communication
thread, there is no redundant communication throughout
the force computation. This implementation is the fastest
among the three due to better request management, which
reduces pressure on the concurrent request queue of the
communication worker. On the other hand, this method uses
more memory.

The force computation phase is the most time consuming
phase in a BH time step. Its implementation in UPCR-BH
is complicated due to the management of many different
concurrent data structures. Further, intra-node load balancing
between workers uses a simple-guided scheduling approach
which may result in superfluous locking. These issues moti-
vated us to develop a more intuitive and efficient design of
the force computation phase.

B. New BH Force Computation

The BH implementation can be simplified using the PPL
library described in the previous sections: localizing a cell
is equivalent to caching it. With lightweight threads, it
becomes possible to spawn a thread for each body; the thread
scheduler ensures that these threads are scheduled efficiently
on existing hardware resources.

Pseudo-code for the new force computation phase can
be seen in Algorithm 1. Function BH-Force is the main
routine of the algorithm and is executed each step for each
compute node. The ComputeForce function computes the
interaction of a single body on a cell. The Localize
function is used to localize children of unlocalized cells.
Each execution of ComputeForce is done by a single



Algorithm 1 BH Force Computation with PPL

Require:
node.handler : future(Localized(node))
L: list of local bodies.

procedure BH-FORCE
for all body € L do
spawn(ComputeForce(root, b)).sync()
end for
end procedure

procedure COMPUTEFORCE(node, body)
if NeedOpen(node) then
if 'node.local then
node.handler.sync()
end if
OpenCell(node, body)
else
BodyCellUpdate(node, body)
end if
end procedure

procedure LOCALIZE(node)
if node.local then return
end if
for child € node.childs do
node.local = &child.gptr.get()
end for
end procedure

spawned task using spawn, whilst future is used for
spawning cell localization tasks and executing them in the
future. NeedOpen checks a body against the current cell
and decides whether to open it. Depending on the decision,
OpenCell computes the appropriate calculation on the cell
and recursively performs ComputeForce on child nodes,
while BodyCellUpdate updates the body position.

Redundant communication is handled in three ways. First,
each node maintains a future of each localization task.
Once a task performing cell localization is spawned, its
handler is synchronized. If a later force computation task
attempts to localize the same cell, the future handler
will return the spawned task handler. Second, inside the
Localize function, another check of the local pointer
is performed at the beginning of the function and will
return early if the pointer indicates that the node is already
localized. The previous two steps do not eliminate redun-
dancy in race conditions, thus we provide another fail-safe
layer. Each remote pointer associated with a child node is
implemented using a gptr. A single gptr.get () will
return a cached value if the corresponding gptr has been
previously requested, otherwise a communication request is
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Figure 5. PPL BH strong scaling results.

submitted to retrieve the data.

Figure 4 gives an example of a tree structure at the
beginning of a force computation step. The dotted line
represents the remote view of a process for a particular cell
which is implemented using gptr.

In our algorithm, the threading library preempts (via
yield) waiting tasks in two cases. First ComputeForce
tasks can yield after the node handler performs a sync.
Second, a Localize task can yield if gptr.get () per-
forms communication (i.e. the gptr is not already cached).
These tasks will be disabled until the synchronization con-
dition is met; a task is re-enabled after the completion of
localization and after the completion of communication, for
ComputeForce and Localize, respectively. We do not
implement an explicit load-balancing policy and currently
leave all intra-node load-balancing to the Qthreads library.

VI. EVALUATION

We now discuss our testing methodology and results
for our Barnes-Hut implementation, including a comparison
with a state-of-the-art BH implementation, UPCR-BH [5].
Further, we present results of a micro-benchmark testing the
latency of one-sided communication for GASNet, MPI, and
PPL.

A. Test Platform and Methodology

We conducted evaluations on two systems. The first is
Taub, a cluster at the University of Illinois at Urbana-
Champaign. Each compute node has at least 24 GB of RAM
and two Intel HP X5650 six-core processors running at 2.66
GHz. Each core has a private 32 KB L1 data cache and a
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private 256 KB L2 cache, and share a 12 MB L3 cache.
The network uses a QDR InfiniBand interconnect. On Taub,
the PPL BH implementation was run with 10 shepherds with
one worker thread each and two communication threads; the
UPCR-BH implementation was tested using 12 threads.

The second system is the Stampede supercomputer, lo-
cated in the Texas Advanced Computing Center. It consists
of 6400 compute nodes each with 32 GB of memory and
two Intel Xeon E5-2680 eight-core processors running at 2.7
GHz. Each core has a private 32 KB L1 data cache and a
private 256 KB L2 cache, and share a 20 MB L3 cache.
Nodes are interconnected with a 56 GB/s FDR InfiniBand
interconnect in a 2-level Clos fat tree topology. Each node
also has at least one Intel Xeon Phi SE10P co-processor,
but these were not used in our evaluation. On Stampede, the
PPL BH implementation was run with 12 shepherds with
one worker thread each and two communication threads.

On both systems, the C/C++ compiler was GCC 4.7.1.
PPL used GASNet 1.22.4 as its underlying communication
library; UPCR-BH used the Berkeley UPC 2.18.0 runtime.
Input bodies were generated with the Plummer model [15].
We ran four time steps and excluded the first two, averaging
the remainder. All computations involved a time step of
0.025 seconds and a tolerance of 0.5, and were done in
double precision.

B. BH Results

We ran two sets of experiments to evaluate our PPL
BH implementation: weak and strong scaling tests on the
Stampede system and comparison tests with UPCR-BH on
the Taub system.

Figure 5a shows the strong scaling results for PPL BH
on Stampede, using one node as a baseline. For 4096k
bodies, we achieve nearly linear speedup until we reach
2° threads, after which we drop slightly below the ideal
speedup. However, as can be seen in Figure 5b, we continue
to achieve reasonable speedup in total execution time at any
combination of bodies and cores. We observe that PPL BH
scales better as the body count increases.

Our weak scaling results for 512k bodies per node and
2048k bodies per node are presented in Figures 6a and 6b,
respectively. In both cases, we see that PPL BH contin-
ues to scale well as the problem size and thread count
increase. Computation time grows roughly logarithmically,
as expected.

Finally, we compare PPL. BH with UPCR-BH in Figure 7a
using total execution time. Both implementations were run
for problem sizes with total body counts ranging from 64k
to 4096k on two to sixteen nodes on the Taub system. We
find that PPL BH outperforms UPCR-BH for all body counts
once we reach four nodes or more; at sixteen nodes, PPL BH
is between 2 and 13 times faster than UPCR-BH, depending



upon the problem size.

Our performance increase primarily comes from improve-
ments in the force computation phase. The speedup for this
phase compared to UPCR-BH is shown in Figure 7b, and
closely matches the total execution time speedup seen above.
This is primarily due to the use of lightweight threads to
overlap computation more efficiently, and hence make better
use of the available processor resources.

C. One-sided Operation Results

To demonstrate the scalability of PPL’s design, we con-
ducted micro-benchmark experiments to evaluate the perfor-
mance of one-sided communication for PPL in comparison
with MPI+Pthreads and GASNet+Pthreads. The experiments
perform large amounts of remote put and get operations for
varying size data transfers and varying number of threads.
The experiments were run on the Taub system. Each thread
is given an identification and paired with a thread on the
other node. Each pair of threads performs puts and gets using
separate chunks of the global heap.

MVAPICH2 version 2.0 is used for the MPI+Pthreads
experiment and GASNet version 1.22.4 for the GAS-
Net+Pthreads experiment. For the MPI+Pthreads bench-
mark, an MPI memory window is used for each pair of
threads. The synchronization is done on each window after
each put and get to ensure remote completion. There is
no explicit synchronization for GASNet since we use the
blocking put and get syntax. GASNet’s specification ensures
remote completion when these functions return.

Figures 8a and 8b show the results for put and get using
1 thread per node, respectively. As expected, PPL results are
worse than MPI+Pthreads and GASNet+Pthreads due to the
extra overhead of managing communication and lightweight
tasks. This overhead is merely 2-3 usec in both cases, thus
our implementation of the PPL communication engine has
relatively low overhead.

Figures 8c and 8d show the results for put and get using
10 threads per node, respectively. For all data sizes, PPL
performs better than GASNet+Pthreads due to better man-
agement of simultaneous communication operations. This
holds true for MPI+Pthreads up to 16 KB. There are a few
reasons which could explain why MPI+Pthreads performs
better at larger sizes. First, for communication larger than
a certain threshold, many MPI implementations such as
MVAPICH split messages into pieces and switch to another
mode of communication, resulting in smaller overall latency
for transfer setup. This approach proves to scale better and
achieve higher performance for large messages on clusters
with InfiniBand interconnects [16]. Second, the method
MVAPICH uses to poll for communication completion is
different from PPL. Specifically, MPI polls the network
for any communication completion from nearly any MPI
function invocation. This results in identifying completed
communication quicker, but at the same time increases

overhead of all associated MPI functions. On the other hand,
PPL currently only supports polling specific communication
requests due to GASNet’s specification on network polling.
It is expected that the advantage of MVAPICH over PPL for
large messages will disappear when we implement PPL over
the same communication layer that is used by MVAPICH.

Nevertheless, when the communication mode is the same
(i.e. compared to GASNet+Pthreads), PPL consistently per-
forms better with an average speedup of 1.5 times. Up to 16
KB, PPL achieves an average speedup of 2.8 times compared
to MPI+Pthreads.

VII. RELATED WORK

On large scale systems, hybrid programming models have
become part of mainstream research in recent years. A very
common approach is to incorporate an MPI implementation
with a threading library such as OpenMP [17], Habanero-C
[3], and SMPSs [18]. MPI implementers are also looking
for improving MPI performance by integrating threading
libraries with the communication layer [19]. The hybrid
MPI+Pthread library approach has shown improvements
for several algorithms on multi-core distributed memory
clusters. n-body simulations are among those studied, as
shown in [20], [21]. These implementations, however, are
based on the locally essential tree initially proposed in
[14], which does not allow overlapping computation and
communication very effectively.

PGAS programming languages such as Chapel [22] and
X10 [23] have dedicated threading mechanisms, while
UPC [7] and CAF [6] have added multi-threading support
through language extensions. Chapel and X10 do not provide
lightweight threading support; however, several efforts have
been made to add lightweight threading support, such as in
[24], [25]. Since lightweight thread features are added later
to the design, they are still adhoc and not widely adopted.
The PPL PGAS library natively supports lightweight threads
and can be easily extended to any threading library through
class inheritance.

We are not aware of any PGAS and lightweight thread
implementation of the Barnes-Hut algorithm. Several com-
parisons to different BH implementations with other pro-
gramming models, such as Charm++ [26] and PEPC [27],
have been investigated in [5], [4].

VIII. CONCLUSION

We have presented the design and an implementation of
PPL, a new C++ parallel runtime system which provides
an intuitive abstraction over the PGAS model and asyn-
chronous lightweight threads. We have demonstrated how
PPL, implemented by integrating a PGAS communication
layer with the Qthreads lightweight threading model, can
be used to implement a parallel Barnes-Hut implementation
easily and efficiently. Further, our BH implementation scales
well for large thread counts and significantly out-performs
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Figure 8.

the current state-of-the-art multi-threaded BH algorithm. It
does so by utilizing lightweight threads to more efficiently
interleave communication and computation, making greater
use of available computational power. Micro-benchmarks
affirm this by showing the consistency and performance of
PPL in comparison to GASNet and MPI in multi-threaded

settings.

As supercomputers advance toward exascale, future par-
allel applications will need to make greater use of inter- and
intra-node parallelism in the face of increasing communi-
cation delays. The use of C++ allows extending and reim-
plementing features of PPL easily through class inheritance
and polymorphism. This makes it an attractive platform for
experimenting with different combinations of programming
models. We plan to continue to improve PPL, extending it
to support different underlying communication and threading
mediums, while evaluating its performance on a wide range

of problems.
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